Data quality obtained by the iPAVe during comprehensive measurements of road infrastructure conditions.

Bjarne Schmidt, Principal Engineer, ARRB Systems AB, Sweden Slovenko Henigman, Director at Sloman, Slovenia

28 – 29 November 2023, České Budějovice

Motto: Let's asphalt out of the crisis

You need good information to make good decisions

Collected: 5 Jul. 2

otember - Road ID: 249 Aetsantie Forward 10.928km L0 [Front Center]

Data quality starts when planning a measurement campaign

Securing data quality during measurements – 39 parameters for equipment tests

TAWKEYE : MANAGER

Hide Passed	Collapse All
 Survey Config XML Sanity 	^
 Survey Diagnostics All Clear 	~
✓ All Recorded Modules Present	^
✓ Geometry Records Exist	~
 Geometry Stationary Gyro Offset Records Exist 	^
✓ Leadin/Leadout lengths adequate for Geometry Gipsi2 Leadin/out is 677.0m/240.3m	^
✔ Geometry XML Sanity	^
 Geometry Recorded Full Duration 	^

Copy Link Recollect Survey Save Changes

Close

Repeatability tests as part of the Quality Control

Aim:

- To investigate the actual performances in the field of the equipment used
- Tests are performed on special tracks and/or In-service roads
- Testing are done at different speeds
- To determine repeatability, multiple runs, at least three, must be done on the same section.

Reproducibility can be investigated if a reference device is available, or a ground truth established

Reference or ground truth measurements are made with a view to study the accuracy of the device, compared to a reference or a ground truth.

Alignments – is important when studying repeatability.

Hand entered reference

can be several meters out, dependent on operator skill

GPS alignment

- can be few meters off here or there
- very reliant on quality of GPS/INS System (kinematics)

Optical trigger

- very good, but can be 100 mm or so out with system lag and detection rate
- optical tape can move and at times not be detected on every run

Physical block

- physical block on ground to 'manufacture' a spike in the laser data set.
- relies on post survey data manipulation to shift reference to spike in raw data

Profile alignment

- utilizes statistical techniques to determine the optimum offset
- horizontal offset within the cross-correlation sweep analysis is determined and profiles shifted for best match

ARRB Systems was asked to show the repeatability of the iPAVe for a client, testing under traffic on in-service roads.

- 9 km road section measuring in both lanes
- Tests are performed on In-service roads
- Testing are done at traffic speed
- ➡ 5 runs in each direction.

The challenges of performing repeatability tests on in-service roads.

Repeatability of IRI

y = 0.96x + 0.123

 $R^2 = 0.98$

Standard deviation of residuals 0,37 m/km

Repeatability of rutting

 $R^2 = 0.98$

Standard deviation of residuals 0,67 mm

Repeatability of texture (MPD)

y = 0.98x + 0.009

 $R^2 = 0.98$

Standard deviation of residuals 0,037 mm

Repeatability of deflection expressed as SCI 300

y = 1.01x + 2.604

 $R^2 = 0.98$

Standard deviation of residuals 8,3 µm

To sum up:

Parameter	Regression	R ²	Standard deviation of residuals
IRI	0,96*x+0,123	0,98	0,37 m/km
Rutting	1,02*x-0,141	0,98	0,67 mm
MPD	0,98*x+0,009	0,97	0,04 mm
Surface Curvature Index 300 (SCI 300)	1,01*x+2,604	0,98	8,3 μm
Center deflection D0	0,98*x-0,028	0,94	33 µm

Total pavement cracking measured at the five repeated runs.

South Bound Direction

North Bound Direction

Test of alignment for the 5 repeated runs

Profile alignment using Proval

Direction and run number	Differences between runs (m)
NB – 1 vs 2	0,45
NB – 1 vs 3	2,18
NB – 1 vs 4	1,55
NB – 1 vs 5	2,00
SB – 1 vs 2	0,05
SB – 1 vs 3	-0,27
SB – 1 vs 4	0,90
SB – 1 vs 5	0,53

Start of section going north bound

Start of section going south bound

Pavement surface temperature during measurements

SYSTEMS

Temperature influence on Deflections – for further studies

Asphalt temperatures measured at different depth during a day

AIR 357-12				AIR 357-12
	ARRB INTERNAL R AIR 357-12 January 1989	EPORT		
		A STUDY OF THE REL BETWEEN TEMPERAT STIFFNESS OF FULL I PAVEMENTS	ATIONSHIP FURE AND DEPTH ASPHALT	
		by		
		B. SCHMIDT Visiting Scientist National Road Laboratory of Denma	rk	
	P357 - Field trials of	pavement structures		

iPAVe - intelligent Pavement Assessment Vehicle

Simultaneous collection of Functional + Pavement layer + Structural data = Comprehensive Pavement Assessment

iPAVe Road Infrastructure measurements in 2023:

Brazil: Over 4 month in 2022/2023, the iPAVe surveyed approximately 12,600 km of Federal Highways. Data delivered to the client.

Filtering data – locate roads where the asphalt is poor:

• Questions?

Data driven pavement people

While we're driven by a passion for data and technology, our purpose is people and the pavements that take them smoothly and safely from A to B.

E: <u>Bjarne.Schmidt@arrbsystems.com</u> M: +46 76 343 6060 ARRB Systems AB 31 Hyllie Stationstorg, Malmö 215 32 Sweden <u>europe@arrbsystems.com</u>

PAVEMENT MANAGEMENT INTELLIGENCE