HOW CAN THE DIGITAL VALUE CHAIN BETWEEN THE CONSTRUCTION AND THE MIXING PLANT CONTRIBUTE TO SUSTAINABLE ROAD CONSTRUCTION

Dr. Thomas Leopoldseder, CEO Q Point Group

28 – 29 November 2023, České Budějovice

Motto: Let's asphalt out of the crisis

Why sustainable road construction?

Why sustainable road construction?

Potential to reduce CO₂ emissions

by reducing traffic jams caused by

road construction in EU

What can be done?

How can digitalization help?

- Increases efficiency by supporting smooth and automated processes
- Delivers better and more up-to-date information so that resource-efficient decisions can be made
- Helps to avoid construction delays through a continuous flow of information
- Monitors, visualizes and documents process and quality parameters as a tool during work and for continuous improvement processes

Optimize processes

Optimize processes

Implement the digital value chain between construction site, plant and transport!

Digital process management

Digital planning and management of the construction

Digital production management

Digital delivery

management

<complex-block>

Digital asphalt paving management

Digital process management

- The exact planning of material lead to exact deliveries needed and no waste
- Short-term adjustments can be made easily and are shared automatically with all participants
 Errorfree communication with the mixing plant avoids missunderstandings
 - Continuous asphalt paving procedure

- Information about the forecasted demand enables a energy saving production
- Utilization statistics help to manage plants efficently
- Online communication with all construction sites allows to react at short notice and to avoid faulty and energy insufficient productions

Optimize processes

Improve quality

Continous quality control during the paving and compaction process

- Definition of target values to ensure quality but minimize operating time
- Visualization of quality parameters to all drivers
- Analyse the results for a continuous improvement process
- Automatic documentation for maintenance

Use sustainable (raw) materials

Warm-mix-asphalt

- Controlling the delivery process by digital solutions
- Digital control of paving and compaction process to receive high quality roads

Source and copyright: EAPA

Digital production management at the asphalt plant

 Analyze usage of raw material to identify savings in raw materials

	📿 plant		≡	Productio	ns										
			0	4	ů.	0		Quantity	Batches	recipe	I Pulver	Σ Haftmitte	I	Σ Cesteinskör	ung
G			2023												
-				3:13 PM	8:69 min	145	178 187°C	12.14 t	5	10022.22.0 (01.09	01.09 kg	10.836.72	10,771.89 kg
				3:00 PM	34:29 min	148	150 155°C	128.75 L	32	20000.00.0 (48,945.24	48,000.00 kg
				2:57 PM	2:44 min	176	177 178°C	14.12 t	4	70006.06.0 (00.76	00.76 kg	8,950.48	8,865.55 kg
	I Plan			2:56 PM	91 в	184	104 104°C	1.60 L	1	20014.14.0 (00.20	00.20 kg	1,408.47	1,37 <mark>5.80 kg</mark>
	Protocol			2:47 PM	1:23 min	170	170 171°C	7.2 t	2	4909.09.0 (A				4,000.02	4,662.42 kg
	Dalinary notae		-	2:45 PM	2.08 min	181	193 - 205 °C	5.19 r	2	4902.02.0 (A		00.60	00.62 (g	4,544.72	4,639.81 kg
				2:40 PM	15:01 min	149	169 1 67°C	50.85 t	15	70000.00.0 (22,874.53	22 <mark>,500.00 kg</mark>
				2.94 PM	10.63 min	225 :	230 - 234°C	20.48 r	7	2011:11.0 (A.:.				14,252.65	14,258.62 kg
				233 PM	1:22 min	193	196 1 98°C	7.11 t	2	10028.28.0 (00.71	00.71 kg	6,277.09	6,261.35 kg
-				2.25 PM	30 %	166	166 - 166 °C	2.12 (1	10025.25.0 (00.20	00.25 kg	1,840.43	1,831.20 kg
				2:10 PM	42 s	187	197 197°C	1.61 t	1	10013.13.0 (00.21	00.21 kg	1,382.86	1,371.20 kg
Q				2.09 PM	31 ×	191 -	191 - 191 °C	3.12 t	1	10022.22.0 (00.28	00.28 kg	2,784.36	2,765.20 kg
-				2:08 PM	10:40 min	225	227 - 229°C	19.99 t	7	2011.11.0 (4				13,805.44	13,907.13 kg
8				2:00 PM	31 s	192	192 192°C	2.52 t	1	10028.28.0 (00.25	00.25 kg	2,223.40	2,207.50 kg
				1:57 PM	1:19 min	161	161 161°C	5.91 t	2	70000.00.0 f.,				9.245.88	2192 64 ba

Digital production management at the asphalt plant

Dynamic planning of recycling material by using modern control systems maximizes the usesage with the best quality

Use less / green energy

Optimize processes to reduces resource consumption

Improve quality to increase lifetime

Use sustainable (raw) materials to keep the ecological impact low

Use less/green energy to reduce pollutant emissions

Digital production management at the asphalt plant

Production dashboard enable exact analyses to optimize the production sequences for an energy saving production

🕽 plant	Ξ	Das	shboard: A	sphalt pro	duction daily	routine	~		
	- 10)/26/:	2022 Asph	nalt AT Laa ar	n der Thaya GmbH	Asphalt r	mixer 1		
		Reci	pe changes						
	`	AC 8 d	deck 70/100 A1GS						
		AC 22	binder PmB 45/80	-0					
phalt production		AC 11	deck 45/80-65 A2	.G:					
phalt production		AC 22	deck 50/70 A508	P£					
		AC 16	binder PmB 25/55	-6					
erating data		AC 8 (ieck 70/100 A40S	KJ					
shboard - Deliver		AC 32	binder PmB 25/55	-6					
		Others	8						
				4:00 AM	5:DD AM	6:00 AM	7:00 AM	8:DD AM	9:00
		Last	asphalt prod	uctions 5					
			Production be	gin	Recipe	Recip	e	Quantity	
		+	9/18/2023 11	:09:27 AM	2013.13.0	AC 22	binder PmB 45/	8D-6	1
		+	9/18/2023 10	:20:42 AM	2002.02.0	AC 32	binder PmB 25/	55-6	1
ction 🔥	N	+	9/18/2023 10	:07:48 AM	2002.02.0	AC 32	binder PmB 25/	55-б	2

Digital production management at the asphalt plant

 Analyze energy efficiency to identify energy saving potentials

Digitalization can support the sustainability

SFOR

Sustainability in the Road Construction Industry Improve quality to increase lifetime

Use sustainable (raw) materials to keep the ecological impact low

Use less/green energy to reduce pollutant emissions

Digitalization is . . .

... an important contribution to a sustainable asphalt industry!

Thank you very much for your attention!

Thomas Leopoldseder

thomas.leopoldseder@q-point.com

www.q-point.com

